PERMUTABLE SUBGROUPS OF GROUPS OF ORDER 16

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On W -S-permutable Subgroups of Finite Groups∗

A subgroup H of a finite group G is said to be W -S-permutable in G if there is a subgroup K of G such that G = HK and H ∩K is a nearly S-permutable subgroup of G. In this article, we analyse the structure of a finite group G by using the properties of W -S-permutable subgroups and obtain some new characterizations of finite p-nilpotent groups and finite supersolvable groups. Some known results...

متن کامل

Finite groups with $X$-quasipermutable subgroups of prime power order

Let $H$, $L$ and $X$ be subgroups of a finite group$G$. Then $H$ is said to be $X$-permutable with $L$ if for some$xin X$ we have $AL^{x}=L^{x}A$. We say that $H$ is emph{$X$-quasipermutable } (emph{$X_{S}$-quasipermutable}, respectively) in $G$ provided $G$ has a subgroup$B$ such that $G=N_{G}(H)B$ and $H$ $X$-permutes with $B$ and with all subgroups (with all Sylowsubgroups, respectively) $...

متن کامل

groups with all subgroups permutable or soluble

in this paper, we consider locally graded groups in which every non-permutable subgroup is soluble of bounded derived length.

متن کامل

Classification of finite simple groups whose Sylow 3-subgroups are of order 9

In this paper, without using the classification of finite simple groups, we determine the structure of  finite simple groups whose Sylow 3-subgroups are of the order 9. More precisely, we classify finite simple groups whose Sylow 3-subgroups are elementary abelian of order 9.

متن کامل

On Ss-quasinormal and Weakly S-permutable Subgroups of Finite Groups

A subgroup H of a group G is called ss-quasinormal in G if there is a subgroup B of G such that G = HB and H permutes with every Sylow subgroup of B; H is called weakly s-permutable in G if there is a subnormal subgroup T of G such that G = HT and H ∩ T ≤ HsG, where HsG is the subgroup of H generated by all those subgroups of H which are s-permutable in G. We fix in every non-cyclic Sylow subgr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Apllied Mathematics

سال: 2019

ISSN: 1311-1728,1314-8060

DOI: 10.12732/ijam.v32i1.10